



# Assessing Sound Source Localization in Listeners with Bilateral Cochlear Implants

Sean R. Anderson, Rachael Jocewicz, Alan Kan, & Ruth Y. Litovsky University of Wisconsin-Madison, USA

Email: sean.anderson@wisc.edu



**Prostheses** 

Lake Tahoe, CA 2019

Conference on

**Implantable** 

Auditory

## Introduction

- Listeners with bilateral cochlear implants (BICIs) exhibit different sound source localization than those with normal hearing (NH; Fig. 1).
  - Methods of analysis developed for NH may not be optimal for BICI
  - Implications for everyday listening (e.g., poorer localization at far angles, bias toward one side, greater variability in perceived location)



Fig. 1: Example data from individual listeners with NH (A) or BICIs (B). The x-axis indicates the location where the sound was presented. The y-axis indicates the perceived location from the subject. Error bars represent ± 1 standard deviation

- Characterizing changes with localization that depend upon patient-dependent factors could improve our ability to counsel patients.
  - Age at onset of deafness [1-2]
  - Delay in implantation between ears [3-4]

Goal: Compare four statistical approaches for characterizing localization performance to determine how localization *patterns* might be explained by patient-dependent factors.

## **Statistical Approaches**

## 1. Root-Mean-Square (RMS) **Error**



RMS error is the average error by angle. Here  $x_i$  and  $\hat{x}_i$  are the target and response angles, and N is the number of data points.

 Standard for NH [5] and commonly reported in BICI literature

## 3. Logistic Regression



Each curve shows changes in the parameters of the four-parameter logistic equation on the right.  $x_i$  and  $\hat{x}_i$  are defined in RMS caption.

 Model to describe localization function shape [7]

## 2. Localization Sensitivity



LSI is the average of the d' for responses between all pairs of target angles.

Proposed solution for BICIs [6]

## 4. Machine Classification



Panels show different categories of response based on mean or variance at each target angle.

 Sort into previously described categories [6]

Significance: Each statistical approach indexes different aspects of performance (i.e., accuracy, confusions, and shape of function).

## **Dataset & Methods**

- Participants: 48 patients with BICIs • Task: Perceived location was indicated
- on a touch-screen Presented in free-field

  - 19 speakers from ± 90 degrees in 10 degree steps
  - 15 repetitions per speaker
- Stimuli: Trains of 4 pink noise bursts
  - 170 ms each, with 50 ms interstimulus interval
  - 50 dB SPL(A)  $\pm$  4 dB level rove and ± 10 dB spectrum rove



Fig. 2: Illustration of experimental interface. Listeners responded with perceived location on the semicircular arc.

## **Dataset Visualization**



Fig. 3: Localization performance for individual patients with BICIs plotted Onset of Deafness as in Fig. 1. Each panel corresponds to a different individual whose subject code is given in the top-left. Delay in implantation between the ears in years,  $\square$  >5 Years average RMS error, and LSI are given in the bottom-right corner.

- Variability across subjects, with some consistent trends (Fig. 3):
  - Greater variability and errors at lateral target angles
  - Tendency for some subjects to respond in the center for all targets • Larger standard deviations compared to NH (c.f., Fig. 1A)
    - **Results: Errors and Confusions**

1. RMS Error

Onset of Deafness Inter-Implantation Delay (Years) Fig. 4: Relation between RMS error and patient-dependent



and patient-dependent factors.

- Results with overall RMS error (Fig. 4) or LSI (Fig. 5) show no relationship with patient-dependent factors
- High correlation between average RMS and LSI ( $R^2 = .88$ )
- Previous report shows relationship with RMS across central target angles [7] Lack of effect due to failure to account for changes with target angle?

## Alternative to correlation analysis: multi-level, quadratic regression

- Included target angle and squared target angle in regression to predict log(RMS error)
  - Squared term accounts for errors at lateral target angles

factors.

 Revealed significant effect of inter-implantation delay and interaction with age of onset of deafness (Table 1)

| Effect                                                                 | <b>Estimate</b> | t     | p      |
|------------------------------------------------------------------------|-----------------|-------|--------|
| Intercept                                                              | 3.05400         | 51.01 | <.0001 |
| Inter-Implantation<br>Delay                                            | 0.04913         | 5.67  | <.0001 |
| Age of Onset                                                           | -0.13010        | -1.72 | >.05   |
| Target Angle                                                           | 0.00189         | 1.03  | >.05   |
| Target Angle Squared                                                   | 0.0005          | 3.55  | <.001  |
| Inter-Implantation<br>Delay x Age of Onset                             | -0.04941        | -3.87 | <.001  |
| <b>Table 1:</b> Regression results. The log(RMS error) for each target |                 |       |        |

angle was included as dependent variable and 858 degrees of freedom. Transformation of dependent variable prevented violation of normality assumption.

## **Results: Shape of Localization Function**

# 3. Logistic Regression



- Considerable variability in logistic parameters
  - Logistic fit may be useful for distinguishing localization
- performance • No relationship between logistic parameters and patient-dependent factors

### (A) response angle and Slope (B). 4. Machine Classification

Delay (Years)

 Raw data from each subject compared against the 20 categories of response (50 repetitions; Fig. 7) using machine classification

Inter-Implantation

Delay (Years)

Fig. 6: Parameter estimates from logistic fits for Max - Min

- Categories based on changes with development noted in, but did not correspond with LSI [6]
- Unsupervised machine learning algorithm (partitioning around medioids) used to assign one subject to one of the twenty categories
- Process repeated 50 times, and the mode was taken for each subject



correspond to distribution of standard deviations. Onset ≤5 Years (n=20) Onset >5 Years (n=28) Standard Deviation





Fig. 8: Histogram of group assignments for earlier (A) and later (B) deafened patients. Based on categories in Fig. 7.

- Most patients did not exhibit ideal
- localization performance (Fig. 8) Patients that acquired deafness ≤5 years had accurate means but were more

variable at lateral target angles

- Patients that acquired deafness >5 years had heterogeneous localization outcomes
  - More individuals with smaller variability (i.e., ideal standard deviations)

## Summary

- Prior approaches have been unable to illuminate characteristic differences in localization patterns associated with patient-dependent factors with BICIs.
- 1. Root-mean-square error showed poorer performance when patients had a longer delay in implantation between each ear, which was compounded when patients acquired deafness ≤5 years (Table 1).
- 2. Localization sensitivity index was highly correlated with RMS error.
- 3. Logistic regression showed shape of localization varies across patients, but may not be related to the patient-specific factors investigated in this study (Fig. 6).
- 4. Novel approach: Machine classification showed high variability in localization responses at lateral locations for patients that acquired deafness ≤5 years, and heterogeneous outcomes for patients that acquired deafness >5 years (Fig. 8).
- Localization patterns influenced by patient-dependent factors
- Patient care might be optimized by considering these characteristic differences in localization performance.
  - Each approach has different strengths that should be considered depending upon the research question.

## References

- Litovsky, R. Y., Jones, G. L., & Agrawal, S. (2010). *J Acoust Soc Am, 127(1),* 400-414.
- 2. Laback, B., Egger, K., & Majdak, P. (2015). Hear Res, 322, 138-150.
- 3. Reeder, R. M., Firszt, J. B., Holden, L. K., & Strube, M. J. (2014). J Speech Lang Hear Res, 57(3), 1108-
- . Nopp, P. Schleich, P., & D'Haese, P. (2004). *Ear Hear., 25,* 205-214.
- 5. Yost, W. A., Loiselle, L., Dorman, M., & Burns, J. (2012). *J Acoust Soc Am, 133(5),* 2876-2882. 6. Zheng, Y., Godar, S. P., & Litovsky, R. Y. (2015). *PloS One, 10(8),* e0135790.

## 7. Jones, H., Kan, A., & Litovsky, R. Y. (2014). *Trend Hear, 18,* doi:10.1177/2331216514554574. Acknowledgements

This work was supported by NIH-NIDCD R01 DC003083 awarded to Ruth Y. Litovsky, NIH-NIDCD R03-DC015321 to Alan Kan, and NIH-NICHD U54 HD090256 to Waisman Center.

