

Investigating how factors such as patients' hearing history and pitch matching between the ears

may affect binaural sensitivity in bilateral cochlear implant listeners

Tanvi Thakkar¹, Alan Kan¹, Matthew Winn¹, Matthew J. Goupell², and Ruth Y. Litovsky¹ ¹University of Wisconsin-Madison, Madison, WI ²University of Maryland, College Park, MD, USA e-mail: tthakkar@wisc.edu

2015 Conference on Implantable Auditory **Prostheses** Lake Tahoe, CA

PS #R34 Binaural Hearing and Speech Laboratory

INTRODUCTION

- Individuals with bilateral cochlear implants (BiCIs) show large variability in their sensitivities to interaural timing differences (ITDs) 1,2. This variability may arise from a number of different factors, which include:
 - 1. Patients' history: years of bilateral hearing impairment, experience with BiCIs etc.
 - 2. Surgical factors: different insertion depths between the ears.
- 3. Hardware factors: Lack of synchronization between processors ITD sensitivity can be influenced by place of stimulation: the same
- numbered electrodes between the ears can stimulate different places along the cochlea³ (Fig. 1).
- Pitch-matching tasks are often used to choose pairs of electrodes that approximately stimulate the same places along the cochlea in each ear when measuring ITD sensitivity⁴.
- However, there can be high inter-subject variability in pitch-matching outcomes, which can affect which pairs of electrodes are chosen. Hence, a poorly chosen pair could lead to poor ITD sensitivity.

ears could be perceived as

Figure 2: (a) PME task screen

Specificity represents the

consistency of responses

for the chosen electrode

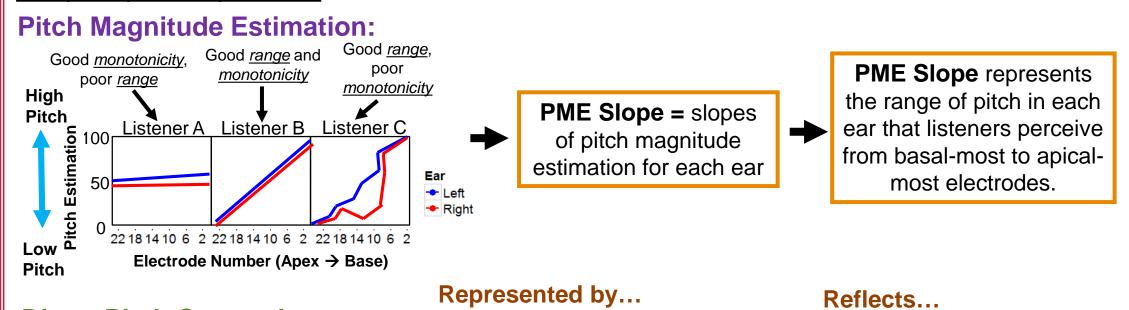
pairs to be perceived as

the same pitch.

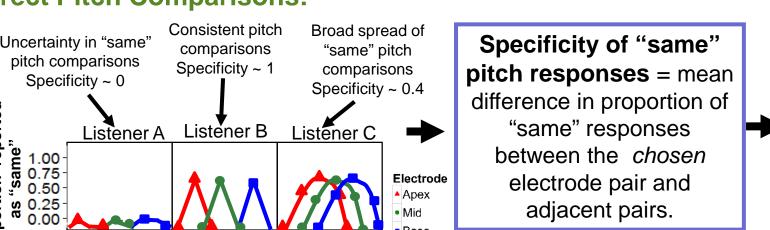
(b) DPC task screen.

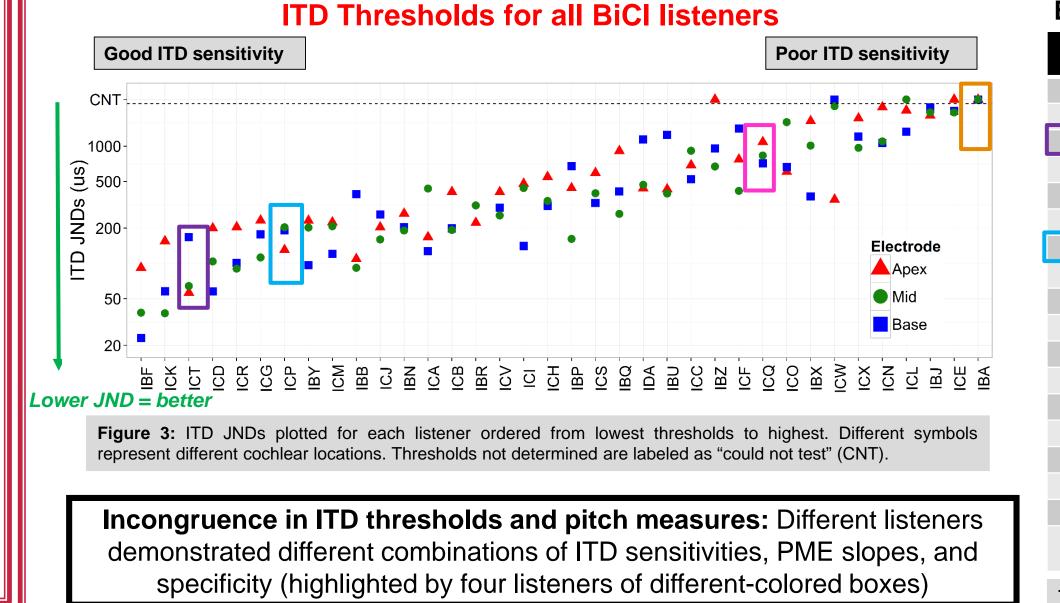
The aim of this study was to investigate if variability in ITD sensitivity found in BiCl users is related to (a) patients' hearing histories, and (b) ability to pitch match between the two ears.

METHODS


- Listeners: 36 BiCl listeners with Cochlear devices
- **Stimuli:** 300 ms constant amplitude pulse trains presented at 100 pps.
- Delivered to the listeners using synchronized L34 processors.
- Biphasic pulses with a 25-µs phase duration with monopolar stimulation.
- **Experiment(s):**
- **Pitch magnitude estimation (PME):**
- Pitch ratings from 0(low)-100(high) with randomized stimulation on each electrode in either ear at 10 reps per ear (Fig 2a).
- **Direct pitch comparison (DPC):**
 - Three cochlear locations (Apex, Middle and Base) were selected in the left ear while the right ear was mismatched by 0 ± 2, and ± 4 electrodes for comparison.
- Pitch-matching options are shown in Fig 2b.

ITD Discrimination:


- 2-interval 2-alternative forced-choice task.
- Listeners reported whether they heard the sound move to the left or right.
- ITDs = ± 100 , ± 200 , ± 400 , ± 800 µs
- A psychometric function was fit to the percent correct data to obtain a justnoticeable difference (JND) threshold at 71% using a bootstrap procedure⁵.


QUANTIFYING RESPONSES TO PITCH TASKS

Example responses in pitch tasks:

Direct Pitch Comparisons:

Pitch Magnitude Estimation(s)

Electrode Number (Apex → Base)

Figure 4: PME responses. Listeners ordered from best to worst ITD sensitivity.

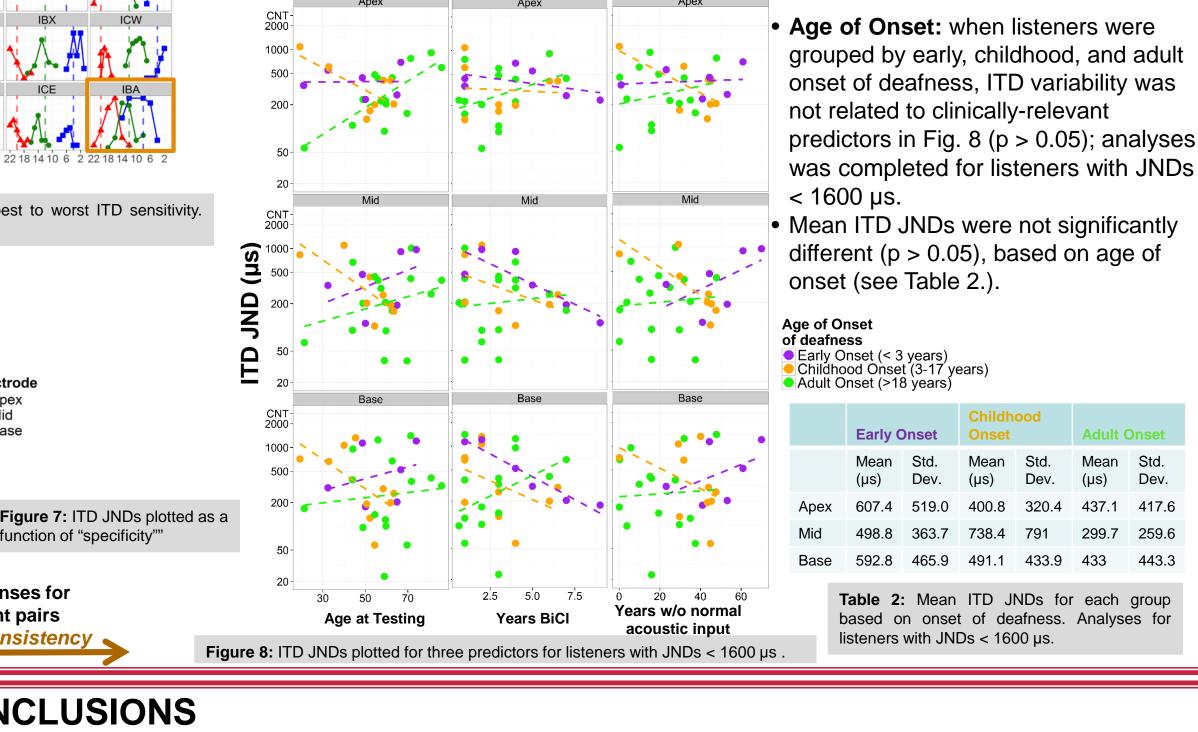
RESULTS

BiCI Listeners:

Direct Pitch Comparison(s)

Right Electrode

Figure 5: DPC measures. Listeners ordered from best to worst ITD sensitivity


ID	Age	Age of Onset HL	Yrs with BiCl	Etiology	ID	Age	Age of Onset HL	Yrs with BiCl	Etiology
IBF	59	38	3	Hereditary	IBP	61	54	7	Meningitis
ICK	69	30	1	Noise	ICS	85	68	3	Unknown
ICT	20	18	2	Trauma	IBQ	80	44	6	Meniers
ICD	54	3	4	Unknown	IDA	46	5	1	Nerve damage
ICR	59	27	2	Radiation	IBU	56	20	4	Progressive
ICG	50	2	9	Progressive	ICC	66	2	4	Congenital
ICP	50	3	1	Nerve Damage	IBZ	44	30	4	Unknown
IBY	48	41	0.66	Progressive	ICF	70	21	1	Otosclerosis
ICM	59	20	1	Progressive	ICQ	19	4	1	Meningitis
IBB	44	23	3	Progressive	ICO	32	4	1	Progressive
ICJ	63	13	3	Childhood illness	IBX	70	40	1	Ototoxicity
IBN	61	0	1	Unknown	ICW	21	0	1	Unknown
ICA	53	13	3	Progressive	ICX	74	0	2	Meniers
ICB	61	9	6	Progressive	ICN	40	4	2	Progressive
IBR	57	28	4	Ototoxicity	ICL	45	3	2	Measles
ICV	58	7	6.5	Sensorineural	IBJ	65	8	1	Unknown
ICI	54	31	3	Unknown	ICE	72	66	4	Unknown
ICH	32	2	5	Enlarged vestibular aqueducts	IBA	75	0	1	Progressive
Table 1: BiCLli	ctopore and their	domographics Lie	tonore order	ad from bost to worst I	TD consitivity				

1) Does the ability to perform tasks such as pitch matching and pitch estimation alone predict ITD outcomes? No.

- Similarity of pitch perception between the ears (i.e. PME slope differences) or the "specificity" of pitch matching of the chosen pitch-matched pair were not directly related to ITD thresholds (p > 0.05 for all cochlear locations).
- No relationship was found between the PME slope differences and the "specificity" of pitch-matching (p > 0.05 for all cochlear locations). Electrode

2) Does hearing history account for ITD sensitivity instead?

ITD JNDs as a function of three predictors: age at testing, years with BiCl, and years without normal acoustic input

Absolute difference in left and right PME slopes a pitch-matched pair in relation to adjacent pairs Smaller difference slope (closer to zero) = better Larger specificity measure = better consistency

the impact of pitch matching on ITD sensitivity may be small. 2. Furthermore, ITD thresholds are not related to patients' hearing history.

Figure 6: ITD JNDs plotted as

a function of difference in left

and right PME slopes.

3. The inability to account for the variation in ITD sensitivity might be due to a greater plasticity of pitch perception between the ears and the lack of plasticity in ITD sensitivity.

CONCLUSIONS

1. ITD thresholds do not appear to be related to listeners' perceptual mapping of pitch as stimulation is varied in the basal-to-apical dimension along the electrode array. Thus

function of "specificity""

REFERENCES

van Hoesel RJ (2007). Sensitivity to binaural timing in bilateral cochlear implant users. Acoust Soc Am. Apr;121(4):2192-206. . Kan A., and Litovsky RY (2015). Binaural hearing with electrical stimulation. Hear Res. 2015 Apr;322:127-37. 3. Kan, A., Stoelb, C., Litovsky, R.Y., & Goupell, M.J. (2013). Effect of mismatched place-of-stimulation on binaural fusion and lateralization in bilateral cochlear-implant users. J. Acoust. Soc. Am. 134(4): 2923-2936.

sensitivity in cochlear implant users. Ear Hear. 2015 May-Jun:36(3):e62-8. Wichmann, F. A., and Hill, N. J. (2001). "The psychometric function: II Bootstrap-based confidence intervals and sampling,

ACKNOWLEDGEMENTS

for providing equipment and technical assistance. This work is funded by NIH-NIDCD (R01 DC003083 to RYL) and NIH-NICHD (P30 HD03352 to Waisman Center)

"Specificity" measure: proportion of responses for

Kan, A., Litovsky RY, Goupell MJ. (2015). Effects of interaural pitch matching and auditory image centering on binaural

Percept. Psychophys., 63, 1314–1329.