

Binaural sensitivity in bilaterally implanted children: mechanisms involved in discrimination vs. identification tasks

Alan Kan, <u>Rachael M. Jocewicz</u>, Shelly P. Godar, and Ruth Y. Litovsky University of Wisconsin-Madison, Madison, WI

e-mail: ahkan@waisman.wisc.edu

METHODS

Participants:

Five children with bilateral Cochlear Nucleus devices.

Table 1. Participant hearing history. Ages reported in years; months.

	Sex	Age at Testing	Age at 1 st Implant	Inter-device Interval	BiCl Exp.	Etiology of deafness
CIAY	Μ	17;8	5;1	0;10	11;8	Bilateral ear infections
CIBW	F	13;10	1;0	2;8	10;1	Connexin 26
CIEV	F	15;2	2;7	8;3	4;3	Genetic
CIBK	Μ	17;1	2;1	4;11	10;1	Connexin 26
CICL	М	11;11	1;5	1;3	9;3	Connexin 26

Stimuli:

- Presented to a medial pair of interaurally pitchmatched electrodes⁴, with either a nonzero ILD or ITD, using a bilaterally synchronized research platform (Cochlear RF GeneratorXS).
- Stimuli were 100 pulse per second biphasic electric pulse train with 25 µs phase width and 300 ms duration.

Tasks:

Responses were taken using a touch screen. ILD and ITD JNDs were measured using 2 tasks:

Analysis:

A psychometric function was fitted to the ILD and ITD data to obtain a JND threshold at 70.7% correct⁵.

ACKNOWLEDGEMENTS

We would like to thank all of our participants and their families for their time, energy, and dedication. This work was supported by NIH-NIDCD (R01DC003083 to RYL) and in part by NIH-NIDCD (R03DC015321 to AK) and NIH-NICHD (U54HD090256 to Waisman Center)

ISMAN CENTER **IN-MADISON** Printing courtesy of the Friends of the Waisman Center

Figure 3. Individual ITD thresholds, measured in µs, in the 2-interval, 2AFC and 3-interval, 2AFC tasks. CND = Could not determine.

RESULTS

- All children demonstrated sensitivity to ILDs, regardless of task type (Fig. 2).
- All children demonstrated elevated thresholds in the 3-interval, 2AFC task compared to the 2-interval, 2AFC task (Fig. 2 & 3).
- Three out of four children tested demonstrated ITD sensitivity. Lack of sensitivity appears to be independent of task (Fig. 3).
- For children with ITD sensitivity, **the** 3-interval, 2AFC task resulted in the elevation or elimination of ITD thresholds (Fig 3).

Table 2. ITD and ILD JNDs for individual participants. CND = Could not determine DNT = did not test (due to time constraints)

	2- interval ILD JND	3- interval ILD JND	2- interval ITD JND	3- interval ITD JND	Pitch- matched electrodes (Left-Right)
CIAY	1.3	6.2	169	759	12 – 12
CIBW	1.4	DNT	300	CND	12 – 14
CIEV	0.7	2.6	979	CND	12 – 14
CIBK	DNT	2.75	CND	CND	12 – 14
CICL	4.0	12.5	CND	CND	12 – 12

CONCLUSIONS

Measurement of binaural hearing thresholds can be influenced by the task. Contrary to initial expectation, children with ITD sensitivity had elevated thresholds in the 3I-2AFC compared to the 2I-2AFC task. This difference in performance may be due to a higher auditory memory load in the 3I-2AFC task. Children who had measurable BMLDs but not ITD JNDs may be using different strategies when completing the BMLD task, such as discriminating interaural decorrelation of the different intervals⁶.

REFERENCE

Ehlers, E., Goupell, M. J., Zheng, Y., Godar, S. P., & Litovsky, R. Y. (2017). Binaural sensitivity in children who use bilateral cochlear implants. The Journal of the Acoustical Society of America, 141(6), 4264-4277. Todd, A. E., Goupell, M. J., & Litovsky, R. Y. (2016). Binaural release from masking with single-and multi-electrode stimulation in children with cochlear implants. The Journal of the Acoustical Society of America, 140(1) Erber, N. (1982). Auditory Training. Washington DC: Alexander Graham Bell Association, pp. 92-94. Litovsky, R. Y., Jones, G. L., Agrawal, S., & van Hoesel, R. (2010). Effect of age at onset of deafness on binaural sensitivity in electric hearing in humans. The Journal of the Acoustical Society of America, 127(1), 400-Wichmann, F. A., and Hill, N. J. (2001) The psychometric function: II Bootstrap-based confidence intervals and sampling. Percept. Psychophys., 63: 1314–1329. Goupell, M. J., & Litovsky, R. Y. (2014). The effect of interaural fluctuation rate on correlation change discrimination. Journal of the Association for Research in Otolaryngology, 15(1), 115-129.

Conference on Implantable **Auditory Prostheses** Lake Tahoe, CA

July 16-21, 2017