WISCONSIN

Across-Electrode Sensitivity to Differences in the Envelope and its Relation to Electrode-Neuron Interface

Sean R. Anderson, Alan Kan, & Ruth Y. Litovsky
University of Wisconsin-Madison, USA

Email: sean.anderson@wisc.edu

Implantable Auditory Prostheses

Conference on

Lake Tahoe, CA 2017

Introduction

- Across-electrode temporal comparisons change based on electrode-neuron interface (Fig. 1) in cochlear implant (CI) users [1].
- Comparison of envelope shape across-electrodes is one perceptual mechanism normal-hearing (NH) listeners use to segregate sound sources, and whose signal is preserved in CI signal processing.
 This study investigated consitivity to differences in emplitude.
- This study investigated sensitivity to differences in **amplitude modulation rate (AMR)**, or frequency of amplitude modulation, for stimuli presented simultaneously across pairs of electrodes.

1: Depiction of Poor Electrode-Neuron Interface

Fig. 1: Poor electrode-neuron interface is shown in the purple box, and results in reduced temporal sensitivity at specific electrode sites [2,3,4].

Hypothesis: If, given two pairs of electrodes, one pair has the **electrode with least amplitude modulation sensitivity**, then it will be **less sensitive** to differences in amplitude modulation rate presented **across-electrodes**.

Stimuli & Procedures

- Listeners: 7 bilateral CI users
- 600 ms duration
- Presented via direct stimulation
- 3000 pulse per second pulse train; presented to electrodes 4 and 16

2: AMR Sensitivity Assessment

Fig. 2: Stimuli were sinusoidally amplitude modulated (50% modulation depth). AMR of the oddball was adaptively varied to find 71.7% threshold.

3: Across-Electrode AMR Comparisons

Fig. 3: Stimuli were sinusoidally amplitude modulated (50% modulation depth). Example provided is normal-hearing stimulus; the CI stimulus had a pulse train carrier played to different electrodes.

- One or two AMRs presented simultaneously (Fig. 3)
- One electrode fixed to 10 or 90 Hz
- Subjects responded **same or different** (1-interval, 2-alternative forced-choice)
- Method of constant stimuli

AMR Conditions: Cochlear Place

er	Same Place Within Ears	Different Place Within Ears
	Same Place Across Ears	Different Place Across Ears

Amplitude Modulation Sensitivity in Each Electrode

4A: Mean Threshold 4B: Threshold re: 10 Hz | Comparison | Comparison

Fig. 4: Thresholds for changes in AMR at each electrode site are shown with respect to ear and place. 4A shows results averaged across reference AMRs. B-D show results for each AMR.

- Thresholds for 70.7% correct in the AM sensitivity assessment task vary depending upon place of stimulation at all reference AMRs (Fig. 4B-4D).
 - No consistent relationship across subjects is supported by previous literature [2,3,4].
 - Higher thresholds at specific electrode sites suggest poorer temporal sensitivity.
- Thresholds vary according to AMR, but are inconsistent across listeners (Fig. 4B-4D).

Binaural Comparisons of AMR

sensitivity at each degree of

difference between AMRs

- Thresholds from Fig. 4A were used to predict the better pair (see hypothesis).
- For several subjects, especially relative to 90 Hz, the predicted worse pair:
 - Was less sensitive on average
 - Required larger differences in AMR to achieve the same sensitivity as the predicted better pair (rightward shift).

Monaural Comparisons of AMR

• As in Fig. 5, for many subjects, the predicted better pair reached peak sensitivity earlier than the predicted worse pair in monaural conditions (Fig. 6).

Listeners

Ref. Rate, Electrode Pair

10 Hz, Predicted Better
10 Hz, Predicted Worse
90 Hz, Predicted Better
90 Hz, Predicted Worse

6. 7A-C represent the different AMR pair conditions.

Fig. 7: Plotted as in Figs. 5 and

• Subjects ICI and ICP were not able to achieve above 70% correct in the most AMR conditions (Fig. 7).

Age	Etiology	Experience (Years L/R)
68	Unknown	17/10
62	Hereditary	6/8
73	Noise-induced	9/3
48	Otosclerosis	2/5
55	Unknown	5/4
62	Progressive	5/4
52	Unknown	8/5
	68 62 73 48 55 62	 68 Unknown 62 Hereditary 73 Noise-induced 48 Otosclerosis 55 Unknown 62 Progressive

Summary

- Amplitude modulation sensitivity appears to change depending upon the electrode site, not consistent with ear or place across subjects (Fig. 4B-D).
- May be an appropriate proxy to electrode-neuron interface
- Performance judging differences in **AMR across electrodes** (Fig 5-6):
- Varied highly between subjects.
- Depended on reference AMR.
- Appears to be **related to amplitude modulation sensitivity** at individual electrode sites.
- Ability to segregate between sound sources may be mediated by temporal sensitivity at each electrode.

References

- Ihlefeld, A., Carlyon, R. P., Kan, A., Churchill, T. Y., & Litovsky, R. Y. (2015). Limitations on monaural and binaural temporal processing in cochlear implant listeners. *Journal of the Association for Research in Otolaryngology.* doi: 10.1007/s10162-015-0527-7.
- 2. Chatterjee, M. & Oberzut, C. (2011). Detection and rate discrimination of amplitude modulation in electrical hearing. *Journal of the Acoustical Society of America, 130(3),* 1567-1580.
- 3. Long, C. J., Holden, T. A., McClelland, G. H., Parkinson, W. S., Shelton, C., Kelsall, D. C., & Smith, Z. M. (2014). Examining the electro-neural interface of cochlear implant users using psychophysics, CT scans, and speech understanding. *Journal of the Association for Research in Otolaryngology.* 15, 293-304.
- 4. Zhou, N. & Pfingst, B. E. (2012). Psychophysically based site selection coupled with dichotic stimulation improves speech recognition in noise with bilateral cochlear implants. *Journal of the Acoustical Society of America*, 132(2), 994-1008.

Acknowledgements

This work was supported by NIH-NIDCD R01 DC003083 awarded to Ruth Y. Litovsky, NIH-NIDCD R03-DC015321 to Alan Kan, and NIH-NICHD U54 HD090256 to Waisman Center.

