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INTRODUCTION RESULTS I: How did Binaural ACE RESULTS II: How did Binaural ACE
- Bilateral cochlear implants are not coordinated across ears. Consequently, the Advanced impact auditory motion discrimination? impact localization accuracy?

Combination Encoder (ACE) strategy independently selects different channels in each ear [1].

Binaural cues, which are computed in the brain on a frequency-by-frequency basis, may not be Total proportlon correct: Statlonary localization accuracy.
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» Participants responded using a laser pointer; OptiTrack motion-capture system recorded Sensitivity and bias for different velocities:
responses. Listeners indicated a stationary sound by pressing a button on the laser pointer once Sensitivity (¢') and bias (c) calculated using proportion of
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balanced number of stationary and moving trials, presented in a pseudo-random block design oensitivity  Separating by stimulus performance as clinical processors, and may give some listeners
across three signal processing conditions (see Table 1). & 20° /IX condition reveals listeners were a slight improvement.
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Equipment: CCi-Mobile Research Platform e o ° 7 + Three of five subjects improved DTOCESSOrS.

 The CCi-Mobile is a portable research platform developed at UT-Dallas. One central processor T @ R to d’ scores above 1 when :

. . . . . . @ ai LD . . . Effect of matching channels:
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Clinical | Cochlear N6 No No - _ U5 conditions for both 20° and 40° Other considerations, such as interaural mismatch from unequal

(Clin.) 3 I o & Clin. ACE bACE moving stimuli. electrode array insertion depth, poor survival of neurons at the

ACE CCi-Mobile Yes NO Figure 2: GUI used to control Figure 5: Mean sensitivity (d') and bias (c) for discriminating between static and elecltrode-n_e_uro_n mtﬁrche’ or delayed aﬁCtlvatlon tl.mes across ears (6]

bACE Cci-Mobile Yes Yes signal prbcessing strategy on moving sounds at different velocities. Error bars show standard deviation. could be mitigating the improvements oftered by Binaural ACE.

Table 1: Processing strategies compared in this study. the CCi-Mobile.
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