

Evaluating the impact of a simulated mixed-rate cochlear implant strategy on

perception of interaural time differences in noise

Tanvi Thakkar¹, Thibaud Leclère², Alan Kan^{1,3}, and Ruth Y. Litovsky¹ ¹University of Wisconsin-Madison, Madison, WI, ²University of Salamanca, Salamanca, Spain ³Macquarie University, Sydney, Australia

e-mail: tanvi.thakkar@wisc.edu

2020 ARO MidWinter Meeting San Jose, CA **Poster # 331**

Binaural Hearing and Speech Laboratory

INTRODUCTION

- ❖ Normal hearing (NH) listeners rely on low-frequency envelope or fine structure information to locate a sound source using interaural time differences (ITDs) [1].
- Current cochlear implant (CI) technology cannot accurately process ITDs. Bilateral CI listeners show poor sensitivity to ITDs with lowrate stimulation using research processors [2]. Low stimulation rates provide poor speech understanding due to poor encoding of the speech envelope (see Figure 1).

Previous work has demonstrated that *mixed rates* of stimulation can provide good ITD sensitivity [3] and does not worsen speech understanding [4] in bilateral CI listeners.

Figure 1: Schematic depicting the trade off for low and high rate stimulation on performance in bilateral CI listeners

- ❖ However, it is unknown whether a mixed-rate signal is useful in noisy environments. It is also unclear whether the low frequency envelope or low-rate fine structure is more useful for bilateral CI listeners in noise.
 - This study simulated mixed-rate speech in noise to understand the influence of the envelope vs. fine structure ITD of a word in noise in NH listeners.
 - ❖ We used a vocoding technique which downsamples the envelope in certain frequency bands (Figure 2) to reflect lowrate fine structure information [5].

Aim: Explore the utility of a *simulated* mixed-rate signal for discrimination of ITDs in noise.

Figure 2: Illustration of "mixed-rate" amplitude spectra of a vocoded word. The reduced bandwidths of some of the frequency bands demonstrate under-sampled bands

Hypothesis: If NH listeners exhibit better performance using high-rate only stimuli, this indicates a reliance on envelope information for utilizing ITDs in noise. While greater performance using low-rate only stimuli indicates a greater reliance on low-rate "fine structure" information.

STIMULI

- Consonant Nucleus Consonant (CNC) words in speech-shaped noise (SSN)*.
- ❖ 16-channel tone vocoder (3 configurations):
 - All-High: no envelope degradation.
 - 2. Mixed: every odd numbered band was degraded.
- 3. All-Low: all bands degraded.
- **Φ** ITDs applied to CNC Target word: ± 25 , ± 50 , ± 75 , ± 100 , ± 125 μs.
- * ITD applied to SSN noise: 0 μs.
- ❖ SNRs: -5 and 10 dB.
- *same stimuli from [5].

High and low rates were simulated by downsampling the envelope in individual frequency bands during the vocoding process

Figure 3: Schematic for vocoding mixed rates. Low-rate channels were implemented by reducing the sampling rate to 100 Hz. High-rate channels were sampled at 1000 Hz. Figure redrawn from [5].

Figure 5: Example trial with a right-ward ITD and response screen.

Figure 4: Spectrograms of the

word "GOOSE" in quiet.

High

SUBJECTS & TASK 7 NH listeners

- English native speakers, passed a hearing screening at 20 dB HL.
- **❖** <u>Task:</u>
- 2-interval, 2-alternative forced-choice task.
 - ❖ First interval: listeners were presented with a single CNC word with a 0 μs ITD.
 - Second interval: the same CNC word with either a left-ward or right-ward ITD.
 - Listeners were instructed to report if they heard the word in the second interval to the left or the right of the first interval.

RESULTS: Group Data SNR -10 dB Do simulations of a mixed-rate speech

Figure 6: Average percent correct scores as a function of ITD. Error bars represent standard error of the mean.

Group data show a significant effect of ITD [F(1, 4) = 48.89, p < 0.01], Configuration [F(1, 4) = 48.89, p < 0.01](1, 2) = 29.291, p<0.01], and SNR [F (1, 1)= 14.81, p<0.01].

high-rate only signal?

❖ A pairwise comparison showed that score in the Mixed and All-High were significantly different from "All-Low," but not from each other.

RESULTS: Individual Data

Both percent correct scores and just-noticeable difference (JND) thresholds show that the introduction of <u>only</u> low-rate ITDs results in worse performance than a signal having channels with "All-High" or "Mixed" rate ITDs.

Figure 7: Individual just-noticeable difference (JND) thresholds per configuration. Lower values indicate better ITD sensitivity. Error bars represent standard error of the mean.

Implementing a mixed-rate strategy for CI listeners

Figure 8: Electrodogram of the word "GOOSE" in +12 dB SNR SSN with a 1000 μs ITD. Stimulus was processed using two different methods in a CIS-like strategy.

SUMMARY

- * This study investigated the effect of mixed-rate simulations on the ability of NH listeners to discriminate ITDs of words in noise.
 - ❖ Worst performance occurred in the All-Low configuration, while best performance occurred with All-High or Mixed.
 - This suggests that low-rate "fine structure" may be detrimental for ITD discrimination of a word in noise. This is clear from the decrease in performance in the All-Low configuration compared to All-High or Mixed.
- ❖ Among NH listeners, having a well-represented envelope may be more important for relaying an ITD of a word in noise. It remains unclear whether BiCI listeners use the envelope or low rate cue under a similar paradigm

REFERENCES

- Wightman, F. L., and Kistler, D. J. (1992). "The dominant role of low-frequency interaural time differences in sound localization," J. Acoust. Soc. Am., 91, 1648–1661. doi:10.1121/1.402445
- Kan, A., and Litovsky, R. Y. (2015). "Binaural hearing with electrical stimulation," Hear. Res., 322, 127–37. doi:10.1016/j.heares.2014.08.005 Thakkar, T, Kan, A, Jones, HG, and Litovsky, RY (2018). Mixed stimulation rates to improve sensitivity of interaural timing differences in
- bilateral cochlear implant listeners. The Journal of the Acoustical Society of America, 143, 1428-1440. Leclère, T, Kan, A, Litovsky, Y, (in prep). Speech intelligibility of unilateral cochlear implant patients with a mixed-rate strategy. 5. Leclère, T. Doyle, S. Kan, A. Litovsky, Y. (2019). Binaural Intelligibility Level Difference with a Simulation of a Mixed-rate Strategy for

Bilateral Cochlear Implants. Presented at the 42nd ARO Mid-winter Meeting Baltimore, MD

ACKNOWLEDGEMENTS

We would like to thank all our participants and Cochlear Ltd for providing equipment. This work is funded by NIH-NIDCD (R03DC015321 to AK and R01DC003083 to RYL), and NIH-NICHD (U54HD09256 to Waisman Center).

Printing courtesy of the Friends of the Waisman Center