INTRODUCTION

- In spatial unmasking of speech, children with bilateral cochlear implants (BiCIs) do not receive intelligibility benefits mainly from head shadow, by attending to the ear with better signal-to-noise ratio (SNR) of the target speech
- Most children with BiCIs do not seem to benefit from interaural difference cues, i.e., interaural time and level differences (ITD and ILD), and some even demonstrate an “anti-benefit” or interference when a spatial separation between the target and masker is introduced
- Previous work on spatial unmasking is limited to using 90° angular separation between target and masker to quantify benefits from head shadow and interaural differences
- In this study, we enlarged the target-masker angular separation to 180° in virtual auditory space (VAS) and systematically assessed intelligibility benefits from individual and co-occurring auditory cues in spatial unmasking

METHODS

- Participants
 - BICI group: 9 children; all Cochlear N5 or N6 users with ACE strategy
 - NH group: 19 children; age-matched to bilateral experience among BICI group between 6 to 12.9 yrs old. All had ≤20 dB HL from 125-8000 Hz.
- Speech reception thresholds (SRT) measured at 50% correct adaptively
 - Target: AuSTIN sentences [3]; Masker: 2-talker babble (e.g., science news)
- Test Conditions
 - Target-masker spatially co-located vs. 180° angular separation
 - VAS created with individual head-related transfer functions (HRTF) recorded behind-the-ear (BTE) from BICI users and with KEMAR HRTFs recorded in-the-ear (ITE) for NH children
 - Binarual vs. Monaural
 - Direct audio input to CI processors or circumaural headphones for NH children
 - Stereo vs. better-ear (BICI) or left-ear (NH) only

METHODS

- Formula to Calculate Intelligibility Benefit
 - Differences provided up to 6 dB benefits
 - Target hearing and from KEMAR HRTFs measured BTE.

RESULTS 1: ITD and ILD Calculated from Individual HRTFs

- BICI users had similar ITD (<1.5 kHz) from BTE HRTFs as NH children tested with KEMAR HRTFs, but smaller ILDs between 4-8 kHz

RESULTS 3: Intelligibility Benefit from Unmasking Cues

- All children in the BICI group showed a head shadow benefit >2 dB
- Very small benefit from summation likely due to intensity in the added ear
- In the BICI group, interaural differences provided up to 6 dB benefits except for one child who demonstrated an “anti-benefit”
- The ranges of intelligibility benefits from monaural and binaural cues are similar between BICI and NH groups

ACKNOWLEDGEMENTS

The authors would like to thank all the children who participated in the study, as well as Shelly Godar, Brianne Radion, Push White, Molly Berlin, and Elza Cajon for assistance during data collection. This work was supported by NIH NIDCD R01 DC013734 and FSIDOBX002105 and NICHD R01 DC012855 & P.H., and with private funds contributed by the Association for Research in Otolaryngology, San Jose, CA 2012.

REFERENCES